Part Number Hot Search : 
XC6203 ZMY20M XN4505 WJ1511CF SCD110H UPD77213 B3234 1N2133AR
Product Description
Full Text Search
 

To Download AMMP-6408 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AMMP-6408
6 to 18 GHz 1 W Power Amplifier in SMT Package
Data Sheet
Description
The AMMP-6408 MMIC is a broadband W power amplifierinasurfacemountpackagedesignedforuse intransmittersthatoperateinvariousfrequencybands between6GHzand8GHz.At8GHz,itprovides29dBm ofoutputpower(P-dB)and20dBofsmall-signalgain from a small easy-to-use device. This MMIC optimized forlinearoperationwithanoutputthirdorderintercept point(OIP3)of38dBm.
Features
* * * * * * 5x5mmSurfaceMountPackage Widefrequencyrange6-8GHz Highlylinear:OIP3=38dBm IntegratedRFpowerdetector ESDprotection(50VMM,and250VHBM) Inputportpartiallymatched (Fornarrowbandapplications,customermayobtain optimum matching and gain with an additional matchingcircuit.)
Pin Connections (Top View)
1 2 3
Specifications (Vd = 5 V, Idsq = 650 mA)
* * * *
4
Frequencyrange6to8GHz Smallsignalgainof8dB Returnloss:input:-3dB,Output:-9dB HighPower:@8GHz,P-dB=29dBm
8
Application
* * * * Microwaveradiosystems SatelliteVSAT,DBSUp/DownLink LMDS&Pt-PtmmWLongHaul Broadband wireless access (including 802.6 and 802.20WiMax) * WLLandMMDSloops * Commercialgrademilitary
7 PIN 1 2 3 4 5 6 7 8
6 FUNCTION Vgg Vdd DET_O RF_out DER_R Vdd Vgg RF_in
5 PACKAGE BASE GND
Attention:Observeprecautionsforhandling electrostaticsensitivedevices. ESDMachineModel(ClassA) ESDHumanBodyModel(ClassA) RefertoAvagoTechnologiesApplicationNote A004R: Electrostatic Discharge, Damage and Control. Note:ThisMMICusesdepletionmodepHEMT devices. Negative supply is used for the DC gatebiasing.
Absolute Maximum Ratings[1]
Symbol Vd Vg Id PD Pin Tch,max Tstg Tmax Parameters[1] PositiveSupplyVoltage GateSupplyVoltage DrainCurrent PowerDissipation CWInputPower MaximumOperatingChannelTemperature StorageCaseTemperature MaximumAssemblyTemp(20sec.max.) Units V V mA W dBm C C C Value 6 -3to0.5 900 4.6 23 +55 -65to+55 +260 Notes note2
note2,3 note2 note4,5
Notes: . Operationinexcessofanyoneoftheseconditionsmayresultinpermanentdamagetothisdevice. 2. Combinationsofsupplyvoltage,draincurrent,inputpower,andoutputpowershallnotexceedPD. 3. Whenoperatingatthisconditionwithabaseplatetemperatureof85C,themediantimetofailure(MTTF)issignificantlyreduced. 4. TheseratingsapplytoeachindividualFET. 5. Junction operating temperature will directly affect the device MTTF. For maximum life, it is recommended that junction temperatures be maintainedatthelowestpossiblelevels.
DC Specifications/Physical Properties
Symbol Id Vg Rqjc Tch Parameters and Test Conditions DrainSupplyCurrent(Vd=5V,VgsetforIdTypical) GateSupplyOperatingVoltage(Id(Q)=650(mA)) ThermalResistance[6](Channel-to-BasePlate) ChannelTemperature Units mA V C/W C Value 650 -. 20 50.6
Note: 6. AssumeSnPbsolderingtoanevaluationRFboardat80Cbaseplatetemperatures.Worstcaseforthechanneltemperatureisunderthe quiescentoperation.Atsaturatedoutputpower,DCpowerconsumptionrisesto4.26Wwith.4WRFpowerdeliveredtoload.Power dissipationis3.Wandthetemperatureriseinthechannelis68.4C.Inthiscondition,thebaseplatetemperaturemustberemainedbelow 86.6Ctomaintainmaximumoperatingchanneltemperaturebelow55C.
RF Specifications[1,2,3,4]
Symbol Freq. Gain P-dB P-3dB OIP3 RLin RLout Isolation
TA=25C,Vd=5V,Id(Q)=650mA,Zo=50 Parameters and Test Conditions OperationalFrequency Small-SignalGainS2[3,4] OutputPoweratdB[3] GainCompression[2] OutputPowerat3dBGainCompression[3] ThirdOrderInterceptPoint; f=00MHz;Pin=-20dBm InputReturnLoss[2] OutputReturnLoss[2] ReverseIsolation Units GHz dB dBm dBm dBm dB dB dB Minimum 6 7.5(@Freq=8GHz) 5.5(@Freq=7GHz) 28(@Freq=8GHz) 27(@Freq=7GHz) Typical 8 28.5 29.5 38 3 9 45 Maximum 8
Notes: .Small/large-signaldatameasuredinpackagedformona2.4mmconnecterbasedevaluationboardatTA=25C. 2.Thisfinalpackagepartperformanceisverifiedbyafunctionaltestcorrelatedtoactualperformanceatoneormorefrequencies. 3.Specificationsarederivedfrommeasurementsina50testenvironment.Aspectsoftheamplifierperformancemaybeimprovedovera narrowerbandwidthbyapplicationofadditionalconjugate,linearity,orpowermatching. 4.Preassemblyintopackageperformanceverified00%on-waferpublishedspecificationsatfrequencies=7,2,and7GHz.
2
Typical Performances (Data Obtained from 3.5-mm Connector Based Test Fixture, and This Data is Including Connecter Loss, and Board Loss.)
(TA=25C,Vd=5V,ID=650mA,Zin=Zout=50)
40 35 30 S21 (dB) 25 20 15 10 5 0 2 4 6 8 10 12 14 16 18 20 S21 (dB) S12 (dB)
0
0
-20 RETURN LOSS (dB) S12 (dB)
-5
-40
-10
-60
-15 S11 (dB) S22 (dB)
-80 22
-20
2
4
6
8
10
12
14
16
18
20
22
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Typical gain and reverse isolation
Figure 2. Typical return loss (input and output)
35 P-1 (dBm), P-3 (dBm), PAE (%) 30 NOISE FIGURE (dB) 25 20 15 10 5 0 6 7 8 P-1 (dBm) PAE (%) @ P-1 P-3 (dBm) PAE (%) @ P-3 9 10 11 12 13 14 15 16 17 18
10 8 6 4 2 0
4
6
8
10
12
14
16
18
20
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 3. Typical output power (@P-1, P-3) and PAE and frequency
Figure 4. Typical noise figure
40 35 Po (dBm) and PAE (%) 30 25 20 15 10 5 0 -15 -10 -5 0 Pin (dBm) 5 10 15 Pout (dBm) PAE (%) Id (TOTAL)
1000
900 IM3 LEVEL (dBc) Ids (mA)
800
700
600
-20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44
4
6
8
10
12
14
16
18
20
FREQUENCY (GHz)
Figure 5. Typical output power, PAE, and total drain current versus input power at 8 GHz
Figure 6. Typical IM3 level vs. frequency at +20 dBm output single carrier level (SCL)
3
0 -10 -20 IM3 (dBc) -30 -40 -50 -60 -70 -80 4 6 8 10 10 14 16 18 20 22 24 28 IM3 (dBc) Ids (mA)
900 850 800 IM3 (dBc) Ids (mA) 750 700 650 600 550 500
0 -10 -20 -30 -40 -50 -60 -70 -80 4 6 8 10 10 14 16 18 20 22 24 28 IM3 (dBc) Ids (mA)
900 850 800 Ids (mA) Ids (mA) Ids (mA) 750 700 650 600 550 500
SCL (dBm)
SCL (dBm)
Figure 7. Typical IM3 level and Ids vs. single carrier output level at 6 GHz
Figure 8. Typical IM3 level and Ids vs. single carrier output level at 8 GHz
0 -10 -20 IM3 (dBc) -30 -40 -50 -60 -70 -80 4 6 8 10 10 14 16 18 20 22 24 28 IM3 (dBc) Ids (mA)
900 850 800 IM3 (dBc) Ids (mA) 750 700 650 600 550 500
0 -10 -20 -30 -40 -50 -60 -70 -80 4 6 8 10 10 14 16 18 20 22 24 28 IM3 (dBc) Ids (mA)
900 850 800 750 700 650 600 550 500
SCL (dBm)
SCL (dBm)
Figure 9. Typical IM3 level and Ids vs. single carrier output level at 12 GHz
Figure 10. Typical IM3 level and Ids vs. single carrier output level at 14 GHz
0 -10 -20 IM3 (dBc) -30 -40 -50 -60 -70 -80 4 6 8 10 10 14 16 18 20 22 24 28 IM3 (dBc) Ids (mA)
900 850 800 IM3 (dBc) Ids (mA) 750 700 650 600 550 500
0 -10 -20 -30 -40 -50 -60 -70 -80 4 6 8 10 10 14 16 18 20 22 24 28 IM3 (dBc) Ids (mA)
900 850 800 750 700 650 600 550 500
SCL (dBm)
SCL (dBm)
Figure 11. Typical IM3 level and Ids vs. single carrier output level at 16 GHz
Figure 12. Typical IM3 level and Ids vs. single carrier output level at 18 GHz
4
0 -5 -10 -15 -20 -25 S11_20 S11_-40 S11_85 0 5 10 15 20 25
25
20 S21 (dB)
S11 (dB)
15
10
S21_20 S21_-40 S21_85 4 6 8 10 12 14 16 18 20
5
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 13. Typical S11 over temperature
Figure 14. Typical gain over temperature
0 -5 -10 -15 -20 -25 S22_20 S22_-40 S22_85 0 5 10 15 20 25
32 30 28 P-1 (dBm)
S22 (dB)
26 24 22 20 P-1_85 deg P-1_20 deg P-1_-40 deg 4 6 8 10 12 14 16 18 20
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 15. Typical S22 over temperature
Figure 16. Typical P-1 over temperature
5
Typical Scattering Parameters [1], (TA=25C,Vd=5V,ID=650mA,Zin=Zout=50W)
Freq [GHz] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 dB -3.83 -4.33 -4.35 -2.87 -2.18 -1.88 -2.85 -5.02 -6.38 -6.79 -8.64 -14.40 -4.82 -3.86 -19.84 -4.51 -1.76 -1.30 -1.04 -0.57 -0.12 S11 Mag 0.64 0.61 0.61 0.72 0.78 0.81 0.72 0.56 0.48 0.46 0.37 0.19 0.57 0.64 0.10 0.60 0.82 0.86 0.89 0.94 0.99 Phase -7.36 -37.59 -57.25 -67.80 -81.97 -99.66 -125.26 -151.04 -177.19 167.29 129.42 34.52 -87.84 -142.34 171.38 -70.79 -104.56 -129.94 -159.31 176.91 158.94 dB 18.46 22.06 21.82 20.57 19.45 19.28 20.24 20.41 19.28 18.74 19.07 19.99 18.06 9.17 -6.42 -16.88 -24.20 -33.63 -42.07 -50.13 -44.39 S21 Mag 8.37 12.67 12.33 10.67 9.38 9.21 10.27 10.49 9.20 8.65 8.98 9.99 7.99 2.88 0.48 0.14 0.06 0.02 0.01 0.00 0.01 Phase -45.38 -160.68 105.82 30.27 -34.10 -91.39 -154.70 130.30 56.72 -8.92 -83.27 -174.68 61.47 -58.13 -160.84 -164.95 137.84 69.70 -90.70 109.52 -58.10 dB -49.36 -47.90 -55.02 -58.31 -56.32 -50.78 -48.77 -45.72 -45.56 -46.62 -47.25 -45.92 -42.49 -50.94 -39.18 -42.22 -64.23 -46.41 -41.89 -50.58 -41.20 S12 Mag 3.41E-03 4.03E-03 1.78E-03 1.21E-03 1.53E-03 2.89E-03 3.64E-03 5.17E-03 5.27E-03 4.67E-03 4.34E-03 5.06E-03 7.50E-03 2.84E-03 1.10E-02 7.74E-03 6.15E-04 4.78E-03 8.05E-03 2.96E-03 8.71E-03 Phase 59.85 -10.90 -87.02 155.08 87.15 36.92 5.73 -42.89 -90.74 -134.99 -179.47 31.89 -86.04 -115.71 -92.64 -168.17 172.50 -96.28 -130.89 122.04 -50.18 dB -9.89 -24.54 -12.59 -11.66 -9.47 -8.10 -8.11 -5.74 -5.64 -6.02 -8.44 -12.65 -12.88 -5.42 -6.15 -2.48 -1.13 -1.28 -1.01 -0.82 -0.33 S22 Mag 0.32 0.06 0.23 0.26 0.34 0.39 0.39 0.52 0.52 0.50 0.38 0.23 0.23 0.54 0.49 0.75 0.88 0.86 0.89 0.91 0.96 Phase -112.35 -97.72 -116.00 -123.36 -111.81 -107.66 -96.60 -95.19 -116.87 -158.25 163.63 142.26 -156.34 127.81 -6.31 -89.99 -122.31 -144.94 -164.03 173.03 155.22
Note: .DataobtainedfromanICMtestfixturewithTRLcalibration.ReferenceplanesweredefinedatRFI/Oonthepackage.
6
Biasing and Operation
The recommended quiescent DC bias condition for optimum efficiency, performance, and reliability is Vdd=5 volts with Vg set for Idd=650mA. Minor improvementsinperformancearepossibledependingon theapplication.Thedrainbiasvoltagerangeis3to5V. AsingleDCgatesupplyconnectedtoVgwillbiasallgain stages. Muting can be accomplished by settingVgg to thepinch-offvoltageVp. A simplified schematic for the AMMP6408 MMIC die is showninFigure7.TheMMICdiecontainsESDandover voltageprotectiondiodesforVg,Vd,andVd2terminals. Inafinalizedpackageform,VdandVd2terminalsare commonlyconnectedtotheVddterminal.Thepackage diagram for the recommended assembly is shown in Figure8.Infinalizedpackageform,ESDdiodesprotect allpossibleESDorovervoltagedamagesbetweenVgg andground,VggandVdd,Vddandground.TypicalESD diode current versus diode voltage for -connected diodesinseriesisshowninFigure3.Undertherecommended DC quiescent biasing condition at Vds=5V, Ids=650mA,Vgg=-V, typical gate terminal current is approximately 0.3mA. If an active biasing technique is selected for the AMMP6408 MMIC PA DC biasing, the active biasing circuit must have more than 0-times higherinternalcurrentthatthegateterminalcurrent. Anoptionaloutputpowerdetectornetworkisalsoprovided.Atypicalmeasureddetectorvoltageversusoutputpowerat8GHzisshownFigure20.Thedifferential voltagebetweentheDet-RefandDet-Outpadscanbe correlatedwiththeRFpoweremergingfromtheRFoutputport.Thedetectedvoltageisgivenby, V=(Vref - Vdet)-Vofs whereVref isthevoltageattheDET _Rport,VdetisavoltageattheDET _Oport,andVofsisthezero-input-power offsetvoltage.TherearethreemethodstocalculateVofs: .Vofscanbemeasuredbeforeeachdetectoremeasurement(byremovingorswitchingoffthepowersource andmeasuringVref - Vdet).Thismethodgivesanerror duetotemperaturedriftoflessthan0.0dB/50C. 2.Vofscanbemeasuredatasinglereferencetemperature.Thedrifterrorwillbelessthan0.25dB. 3.Vofscaneitherbecharacterizedovertemperatureand storedinalookuptable,oritcanbemeasuredattwo temperaturesandalinearfitusedtocalculateVofs at anytemperature.Thismethodgivesanerrorcloseto themethod#. TheRFportsareACcoupledattheRFinputtothefirst stage and the RF output of the final stage. No ground wired are needed since ground connections are made with plated through-holes to the backside of the device.
7
Vg
Vd1
Vd2
50
DQ
50 50 800 m
800 m
DET_O
6.5 m
50 10K 200
1K RFIN RFOUT
50 800 m
800 m
10K
50 50
6.5 m
200
Vg
Vd1
Vd2
50
DET_R
DQ
Figure 17. Simplified schematic for the MMIC die
8
DET_O
1
2
3
RF INPUT
8
4
RF OUTPUT
7
6
5
DET_R PIN 1 2 3 4 5 6 7 8 FUNCTION Vgg Vdd DET_O RF_out DER_R Vdd Vgg RF_in
-0.8 V
50
5V
1 F
100 pF
100 pF
1 F
Figure 18. Schematic for recommended assemble example
20 18 16 DIODE CURRENT (mA) 14 12 10 8 6 4 2 0 5.0 5.5 6.0 6.5 VOLTAGE (V) 7.0 7.5 8.0 |Icomp (I_METER.AMP1.0)| (mA) Diode_current DET_R - DET_O (V)
0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 5 10 15 20 Pout (dBm) 25 30 35
1
0.1
0.01
Figure 19. Typical ESD diode current versus diode voltage for 11connected diodes in series
Figure 20. Typical detector voltage and output power, freq. = 18 GHz
9
DET_R - DET_O (V)
Recommended SMT Attachment for 5x5 Package
TheAMMPPackagedDevicesarecompatiblewithhigh volumesurfacemountPCBassemblyprocesses. The PCB material and mounting pattern, as defined in thedatasheet,optimizesRFperformanceandisstrongly recommended. An electronic drawing of the land pattern is available upon request from Avago Sales & ApplicationEngineering.
Figure 21. Suggested PCB Land Pattern and Stencil Layout
Figure 22. Stencil Outline Drawing (mm)
Figure 23. Combined PCB and Stencil Layouts
0
Manual Assembly * FollowESDprecautionswhilehandlingpackages. * Handlingshouldbealongtheedgeswithtweezers. * Recommended attachment is conductive solder paste.Pleaseseerecommendedsolderreflowprofile. NeitherConductiveepoxyorhandsolderingisrecommended. * Apply solder paste using a stencil printer or dot placement.Thevolumeofsolderpastewillbedependent on PCB and component layout and should be controlledtoensureconsistentmechanicalandelectricalperformance. * Follow solder paste and vendor's recommendations when developing a solder reflow profile. A standard profile will have a steady ramp up from room temperature to the pre-heat temp. to avoid damage duetothermalshock. * Packages have been qualified to withstand a peak temperature of 260C for 20 seconds.Verify that the profilewillnotexposedevicebeyondtheselimits.
300 250 TEMPERATURE (C) 200 150 100 50 RAMP 1 0 0 50 PREHEAT 100 RAMP 2 150 TIME (SECONDS) REFLOW 200 COOLING 250 300 PEAK = 250 5C MELTING POINT = 218C
Aproperlydesignedsolderscreenorstencilisrequired toensureoptimumamountofsolderpasteisdeposited onto the PCB pads. The recommended stencil layout is shown in Figure 2. The stencil has a solder paste deposition opening approximately 70% to 90% of the PCB pad. Reducing stencil opening can potentially generate more voids underneath. On the other hand, stencil openings larger than 00% will lead to excessivesolderpastesmearorbridgingacrosstheI/O pads. Considering the fact that solder paste thickness will directly affect the quality of the solder joint, a good choice is to use a laser cut stencil composed of 0.27mm(5mils)thickstainlesssteelwhichiscapable ofproducingtherequiredfinestenciloutline. The most commonly used solder reflow method is accomplished in a belt furnace using convection heat transfer. The suggested reflow profile for automated reflow processes is shown in Figure 22. This profile is designedtoensurereliablefinishedjoints.However,the profile indicated in Figure will vary among different solderpastesfromdifferentmanufacturersandisshown hereforreferenceonly.
Ordering Information AMMP-6408 Part Number Ordering Information
Part Number AMMP-6408-BLKG AMMP-6408-TRG AMMP-6408-TR2G Devices per Container 0 00 500 Container Antistaticbag 7"Reel 7"Reel
Figure 22. Suggested lead-free reflow profile for SnAgCu solder paste
Package Dimensions
0.011 (0.28)
0.114 (2.90) 0.018 (0.46)
1
2
3
3
2
1
0.014 (0.365)
*
A 8
AMMP XXXX YWWDNN
7 6 A 5
0.016 (0.40) 8
4
0.126 (3.2)
0.059 (1.5)
4
0.100 (2.54) 0.029 (0.75) 5 B 0.016 (0.40) 6 7
0.012 (0.30)
0.028 (0.70) 0.100 (2.54) 0.93 (2.36)
FRONT VIEW
SYMBOL A B MIN. 0.198 (5.03) 0.0685 (1.74)
SIDE VIEW
MAX. 0.213 (5.4) 0.088 (2.25)
DIMENSIONAL TOLERANCE: 0.002" (0.05 mm)
DIMENSIONS ARE IN INCHES (MM)
BACK VIEW
Carrier Tape and Pocket Dimensions
4 mm
12 mm AMMP XXXX AMMP XXXX AMMP XXXX
4.00 0.10 SEE NOTE #2 2.00 0.05 B 1.55 0.05 R 0.50 TYP. 1.75 0.10 5.50 0.05 Bo A Ko SECTION B-B Ao A o: Bo : Ko : PITCH: WIDTH: 5.30 5.30 2.20 8.00 12.00 Ao MIN. 5.20 NOM. 5.30 MAX. 5.40 Bo 5.20 5.30 5.40 Ko 2.10 2.20 2.30 A 12.00 0.10 Ao
Bo
B
8.00 0.10
1.50 (MIN.)
Ko
0.30 0.05 SECTION A-A NOTES: 1. Ao AND Bo MEASURED AT 0.3 mm ABOVE BASE OF POCKET. 2. 10 PITCHES CUMULATIVE TOLERANCE IS 0.2 mm. 3. DIMENSIONS ARE IN MILLIMETERS (mm).
Note: No RF performance degradation is seen due to ESD up to 250 V HBM and 50 V MM.The DC characteristics in general show increased leakageatlowerESDdischargevoltages.TheuserisremindedthatthisdeviceisESDsensitiveandneedstobehandledwithallnecessaryESD protocols.
For product information and a complete list of distributors, please go to our website:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright (c) 2007 Avago Technologies Limited. All rights reserved. AV02-0243EN - June 28, 2007


▲Up To Search▲   

 
Price & Availability of AMMP-6408

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X